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MUPHyN Overview
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Research Motivation

« NanoSats (CubeSats) currently do not

have propulsive capability

* A wide range of missions open up if
satellites have significant maneuvering

potential

— satellite swarms

— 1nterplanetary missions from GTO

— targetable reconnaissance
— extended mission duration

* Challenges:

« NanoSat propulsion is limited by

risks to primary payload

« Hybrid rocket motors mitigate
many of these risks but do not fit
well into a small-sat form factor.
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Injectors
Aerospike Nozzle
Helical Combustion Ports Parameter Value
Gravhite I Outer Throat Radius 1.2 cm
raphite Insert .
phie hse Igniter Ports Chamber Pressure 775.6 kPa

e — Specific Heat Ratio 1.27
Molecular Weight 24.247

= Expansion Ratio 2.25

Baseplate Viscosity 0.844 mP

o - “hamber Temperature 3046

Secondarv Iiection Port Chamber T t 3046 K
econdary Injection Po

S ) Viscosity Temperature Exponent 1.5
3D Printed ABS Fuel Grai : ' Convergent Surface Length 0.75 cm
Phenolic Outer Li \ }j Aerospike Surface Temperature 400 K

enolic Outer Liner
Motor Case

* Prototype Objectives:
— provide capability for hot gas main flow thrust vectoring tests
— demonstrate feasibility of regenerative cooling
— demonstrate feasibility of motor form factor

« Not mission optimized or intended to provide high accuracy heat flux
measurements
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MUPHyN Development Overview

« MUPHyN Thruster prototype features several design options

uniquely suited for nanosat applications

*Non-toxic, safe N20O and ABS used as system propellants
-Simplicity of monopropellant hydrazine flow path with enhanced I, and
smaller form factor

*Non-mechanical thrust vectoring using secondary fluid injection on

a compact, truncated aerospike nozzle
-Secondary injection thrust vectoring replaces RCS thrusters, controls
attitude during burns
-Aerospike nozzles allow higher expansion ratios in significantly smaller
volume.
-Regeneratively cooled center plug on aerospike nozzle

*A highly compact form factor enabled by digital manufacture of

fuel grain segments using Fused Deposition Modeling (FDM).
-Embedded helical fuel grain port enhances surface mixing and heat
transfer to fuel grain
-Highly enhanced fuel regression rates

* Non-pyrotechnic Ignition System
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Heat Transfer Analysis

MUPHYN Motor Development




UtahState INtechanicSledhenospIce]
U N I V E R S I T Y Engineering

Regenerative Cooling Overview

« Aerospike nozzles have Coolant Channel Inlet ©§01ant Path

higher heat loads than bell or
conical nozzles P

 Thin throat areas also make
ablation much more of a
problem.

« At least part of the solution 1s
regenerative cooling.

*  Work by Lemieux at Cal Poly F—
demonstrated that nitrous is a Oxidizer Absorbs Heat
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Aerospike Regenerative

Cooling

» Aecrospike heat loading was
calculated from methods by
Mayer for annular nozzle
configurations

» Total heat loading ~ 3500
Watts

 (Coolant side transfer
calculated from common
multiphase models

* Fluid properties calculated
from Helmholtz relations by

Span and Wagner.
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Multiphase Flow Rate

Calculation

« Flow rates were calculated via
method extended from work by Dyer
ct. al

— Modified to numerically “choke” at
low downstream pressures

* A *“two orifice” configuration was
chosen to limit mass flow rate/heat
transfer coupling.

Mass flux (kg/mz)

— Somewhat limits cooling capacity
Heat in, N,O boils 0.95
z 09F N\ - e R e
2 . ; .
Expanded, 7 : : :
saturated N,O S 085 N SR e
~2800 kPa (-5 C) e : | |
N : : :
S ogb N L A
£ : f :
20750 TR NG TP
Sub-cooled N,O
~5500 kPa (20 ; : 0.7¢ Two Crifice Configuration
Injector Orifice Single Orifice Configuration
0.65 : : :
0 2 4 6 8

MUPHYN Motor Development Heat Transfer (kW)
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Experimental Apparatus
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» Motor was tested in a 4 DOF
test stand

» Tested in the Jet Engine Test
Cell on the USU Campus

« Axial load cells are each 200 N
capacity, side load cells each 25 ABS Flexures
N capacity

* Custom designed fabricated
flexures were used in order to
measure both thrust and much

smaller side forces at same time  sid rorce Load Cells |

— Printed out of ABS for e
about $30-$40 each

« Stand was calibrated using a
simultaneously multi-axial
calibration method

 Mass flow rates measured with
custom designed Venturi flow
meter

Motor Case
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MoNSTeR Cart Piping and Instrumentation
/ 55_[5 [~ Load Cell
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Test Results
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e Test Fire HF7

— Last test to date in series
— Fuel Grain “Poppyseed”
— Oxygen secondary injection

MUPHyN Motor Development
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Test Fire Overview
Test No.  Burn Time (s) Isp (s) Total Impulse O/F Ratio Secondary Approx. Ox.
(Ns) Injectant, Flow Rate
(kg/s)
HF1 3 137 487 3.16 none 0.088
HE?2 3 122 370 4.14 Helium 0.077
HE4 3 128 400 3.13 Helium 0.077
HEF'5 3 106 320 3.16 Nitrogen 0.072
HF6 4 144 450 3.35 Nitrogen 0.060
HE7 4 142 469 3.38 Oxygen 0.063
x 10’
200 . w 10
 Tests showed stable combustion Thrust (N)
amber Pressure (Pa)
* Specific impulses ranged from
106 s to 144 s, depending on _
fuel grain configuration g <
» Tests showed substantially < B
. . . . % o
increased regression in helical £ 5
fuel grains g
S
0 - 0
0 1 2 3 4

MUPHYN Motor Development Time (s)
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Ring with forward and

1 backward Larger post-combustion
Fuel Grain Geometry e ool HIrE B
mixing stay-time

A,

—

HF5 — “Dark Chocolate”
"<

Mare fuel between

Helix is much thinner,

wall and port taller, and has twice
the pitch

Uniform Plume r | HF7 . CCPOppyseed99

« Combustion efficiency shows
strong dependence on fuel grain
configuration

— Change between HF 5 and HF 6
increased Isp about 15%

— Change was clearly visible from
the plume

Burning with Ambient Oxygen

/

Clear Helical Flow Structure

— Fuel mass flow rate still to high
MUPHYN Motor Development
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Preliminary Helical
Port Results

« Helical fuel ports
— boost surface area
— Increase regression
rate

e Helical friction
increases

* Density variation
effects
* Increase mixing

* Regression rate
calculated from average
surface area

 Mass flux calculated
from average “effective
diameter”
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Cooling Test Results

250

ABS Insulation
Graphite Insulation

« Aecrospike temperature stayed well
within material temperature limits

« No motors melted or exploded!

* Spike temperature decreased
markedly after graphite insulation
around center column was replaced
with ABS — printed into fuel grain

* No direct measurement of heat flux %
was made, but internal temperature
agreed well with estimates. 0

200

150

100

Aerospike Temperature (C)

Cooling Channels:
Oxidizer Absorbs Heat

Helical Fuel Port
Nozzle Throat

Tangential Injection
into Combustion
Chamber

Oxidizer Inlet
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Aerospike Nozzle
Thrust Vectoring

* Aecrospike nozzle thrust
vectoring has different
properties than vectoring in
conical or bell nozzles

— secondary port can be
active without main flow on

— vectoring is more efficient
when port is near end of
aerospike nozzle

* Cold flow tests on aerospike
nozzles in 2011
demonstrated amplification
factors of about 1.4 (side
force with/without primary
flow)
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Thrust Vectoring Test Results T
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» /

1= 15 2 25 Shock waves from secondary injection
Time (s) .
Injectant  Secondary Flow Isp with Amplification Thrust Injectant Static
Only Isp (s) Primary Flow Factor Vectoring Angle  Pressure (MPa)
(5) (deg)
Nitrogen 51.0 67.1 1.32 1.95 3.5
Helium 121.3 165.5 1.36 3.63 5.7
Oxygen 55.2 73.1 1.32 2.63 3.5
MUPHYN Motor Development
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Igniter Development

a) Exploded View b) Prototype Ignitor Being Test Fired

* Prototype igniter fabricated out of FDM — ABS with conductive
fuel layer

« Ignition uses electrical discharge in GOX environment
— Gox as top pressureant in nitrous system has many advantages

 Up to 27 ignitions have been demonstrated on same igniter fuel
grain

* Electrical ignition uses less than 5 Joules per fire... used much
less for earlier tests with stun gun.
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Questions?
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